
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº6

- 54 -

* Corresponding author.

E-mail address: rberjonga@upsa.es

Keywords

Cloud Computing,
CloudEvents, Edge and
Fog Environments, Event
Driven Architecture,
Event Mesh, Internet of
Things.

Abstract

In IoT contexts, software solutions are required to have components located in different environments: mobile,
edge, fog or cloud. To design this type of application, event driven architecture (EDA) is used to develop
distributed, scalable, decoupled, desynchronized and real-time components. The interconnection between the
different components is done through event brokers that allow communication based on messages (events).
Although the design of the components is independent of the environment in which they are deployed, this
environment can determine the infrastructure to be used, for example the event brokers, so it is common to
have to make modifications to the applications to adapt them to these environments, which complicates their
design and maintenance. It is therefore necessary to have an event mesh that allows the connection between
event brokers to simplify the development of applications. This paper presents the SCIFI-II system, an event
mesh that allows the distribution of events between event brokers. Its use will allow the design of components
decoupling them from the event brokers, which will facilitate their deployment in any environment.

DOI: 10.9781/ijimai.2022.09.003

An Event Mesh for Event Driven IoT Applications
Roberto Berjón*, Montserrat Mateos, M. Encarnación Beato, Ana Fermoso García

Universidad Pontificia de Salamanca, Salamanca (Spain)

Received 21 April 2022 | Accepted 1 July 2022 | Early Access 19 September 2022

I. Introduction

CURRENTLY, all high performance IoT applications, regardless
of their computing paradigm: Cloud, Edge, Fog [1], Edge

mesh [2] and Cooperative-based systems [3], are developed
from an event-driven architecture based on microservices. An
IoT application based on microservices is structured through a
collection of loosely coupled distributed components that facilitate
the scalability and performance of the system. Moreover, the use of
event driven architectures allows the real-time processing not only
of a data stream coming from different data sources external to the
application [4], but also of the data flow exchanged between the
different microservices of the application.

There are two key elements to consider in these systems: how to
represent the data to be processed and the communication channels
through which to transport this data.

The data to be processed is represented in the form of an event.
Through it, a series of other elements can be included that can be
of great importance during its processing: its source, correlation,
transactionality, etc. For this reason, the Cloud Native Computing
Foundation (CNCF) promoted the CloudEvents specification [6] for
describing event data regardless of the format (json, avro, protocol
buffers, xaml) and protocol used for its transport (MQTT, AMQP,
Kafka, HTTP, ...), thus guaranteeing its portability and interoperability.
A CloudEvent contains two parts: data and metadata.

CloudEvent event data is the data represented through the event. It
can be text or binary information. If it is text, the value is included in
the “data” attribute of the cloud event. Conversely, if the data is binary,
its Base64 encoded value is included in the “data_base64” attribute.

CloudEvent event metadata provides contextual information.
It is a set of mandatory and optional attributes in the form of a key
value. Table I describes the attributes included in the specification. In
addition, if necessary, applications can add new attributes.

TABLE I. CloudEvent Metadata Attributes

Attribute Description Category

source Represents the identifier of the publisher
app that broadcast the event. It is
expressed as a URI.

Required

id Event identifier. The sender of the event
must ensure that two events from the
same source must necessarily have
different values for this attribute.

Required

type A publisher broadcasts different types of
events. This attribute (which is a string)
indicates the type of event.

Required

subject Identifies the context in which the source
emits the event. Usually, a consumer
subscribes to events broadcast by a given
source and subject.

Optional

datacontenttype Represents the content type of data value.
It is a string in RFC 2046 format.

Optional

dataschema It is a URI that identifies the schema in
which the data is structured.

Optional

time Represents the datetime at which the
publisher broadcasted the event. RFC
3339 encoded string.

Optional

When integrating distributed systems, it is necessary to use event
brokers through which data flows. Therefore, the components sending
and receiving data are coupled with respect to the event broker used.
As discussed above, one of the premises to be ensured when designing

Universidad Pontificia de Salamanca

